【ADS】AVL Tree

Defination

An empty binary tree is height balanced. If T is a nonempty binary tree with $T_L$ and $T_R$ as its left and right subtrees, then T is height balanced iff
(1) $T_L$ and $T_R$ are height balanced
(2) $| h_L - h_R | \leq 1$ where $h_L$ and $h_R$ are the heights of $T_L$ and $T_R$ , respectively.


Insertion

Case 1: RR

RR

Case 2: LL

similar to RR

Case 3: LR

LR

Case 4: RL

RL

Let $n_h$ be the minimum number of nodes in a height balanced tree of height h.

Then $n_h = n_{h-1}+n_{h-2}+1​$

Fibonacci numbers:

$F_0=0,F_1=1,F_i=F_{i-1}+F_{i-2}$ , for $i > 1$

$\Rightarrow$ $n_h = F_{h+2}-1$, for $h \geq 0$

$\Rightarrow$ h = O(ln n)


性能评估

每次操作需要遍历从最底端到root的各个节点,时间复杂度为O(h),调整操作时间复杂度为O(1)。故每次操作时间复杂度为O(h)。
又 h = O(lnN)
故操作时间复杂度为O(lnN)

Exercises

ex1
$n_h = F_{h+2}-1 = F_{7+2}-1 = 34 - 1 = 33$


Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#ifndef _AVL_TREE_H_
#define _AVL_TREE_H_

typedef int Type;

typedef struct AVLTreeNode{
Type key; // 关键字(键值)
int height;
struct AVLTreeNode *left; // 左孩子
struct AVLTreeNode *right; // 右孩子
}Node, *AVLTree;

// 获取AVL树的高度
int avltree_height(AVLTree tree);

// 前序遍历"AVL树"
void preorder_avltree(AVLTree tree);
// 中序遍历"AVL树"
void inorder_avltree(AVLTree tree);
// 后序遍历"AVL树"
void postorder_avltree(AVLTree tree);

void print_avltree(AVLTree tree, Type key, int direction);

// (递归实现)查找"AVL树x"中键值为key的节点
Node* avltree_search(AVLTree x, Type key);
// (非递归实现)查找"AVL树x"中键值为key的节点
Node* iterative_avltree_search(AVLTree x, Type key);

// 查找最小结点:返回tree为根结点的AVL树的最小结点。
Node* avltree_minimum(AVLTree tree);
// 查找最大结点:返回tree为根结点的AVL树的最大结点。
Node* avltree_maximum(AVLTree tree);

// 将结点插入到AVL树中,返回根节点
Node* avltree_insert(AVLTree tree, Type key);

// 删除结点(key是节点值),返回根节点
Node* avltree_delete(AVLTree tree, Type key);

// 销毁AVL树
void destroy_avltree(AVLTree tree);


#endif
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/**
* AVL树(C语言): C语言实现的AVL树。
*
* @author skywang
* @date 2013/11/07
*/

#include <stdio.h>
#include <stdlib.h>
#include "avltree.h"

#define HEIGHT(p) ( (p==NULL) ? -1 : (((Node *)(p))->height) )
#define MAX(a, b) ( (a) > (b) ? (a) : (b) )

/*
* 获取AVL树的高度
*/
int avltree_height(AVLTree tree)
{
return HEIGHT(tree);
}

/*
* 前序遍历"AVL树"
*/
void preorder_avltree(AVLTree tree)
{
if(tree != NULL)
{
printf("%d ", tree->key);
preorder_avltree(tree->left);
preorder_avltree(tree->right);
}
}


/*
* 中序遍历"AVL树"
*/
void inorder_avltree(AVLTree tree)
{
if(tree != NULL)
{
inorder_avltree(tree->left);
printf("%d ", tree->key);
inorder_avltree(tree->right);
}
}

/*
* 后序遍历"AVL树"
*/
void postorder_avltree(AVLTree tree)
{
if(tree != NULL)
{
postorder_avltree(tree->left);
postorder_avltree(tree->right);
printf("%d ", tree->key);
}
}

/*
* (递归实现)查找"AVL树x"中键值为key的节点
*/
Node* avltree_search(AVLTree x, Type key)
{
if (x==NULL || x->key==key)
return x;

if (key < x->key)
return avltree_search(x->left, key);
else
return avltree_search(x->right, key);
}

/*
* (非递归实现)查找"AVL树x"中键值为key的节点
*/
Node* iterative_avltree_search(AVLTree x, Type key)
{
while ((x!=NULL) && (x->key!=key))
{
if (key < x->key)
x = x->left;
else
x = x->right;
}

return x;
}

/*
* 查找最小结点:返回tree为根结点的AVL树的最小结点。
*/
Node* avltree_minimum(AVLTree tree)
{
if (tree == NULL)
return NULL;

while(tree->left != NULL)
tree = tree->left;
return tree;
}

/*
* 查找最大结点:返回tree为根结点的AVL树的最大结点。
*/
Node* avltree_maximum(AVLTree tree)
{
if (tree == NULL)
return NULL;

while(tree->right != NULL)
tree = tree->right;
return tree;
}

/*
* LL:左左对应的情况(左单旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* left_left_rotation(AVLTree k2)
{
AVLTree k1;

k1 = k2->left;
k2->left = k1->right;
k1->right = k2;

k2->height = MAX( HEIGHT(k2->left), HEIGHT(k2->right)) + 1;
k1->height = MAX( HEIGHT(k1->left), k2->height) + 1;

return k1;
}

/*
* RR:右右对应的情况(右单旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* right_right_rotation(AVLTree k1)
{
AVLTree k2;

k2 = k1->right;
k1->right = k2->left;
k2->left = k1;

k1->height = MAX( HEIGHT(k1->left), HEIGHT(k1->right)) + 1;
k2->height = MAX( HEIGHT(k2->right), k1->height) + 1;

return k2;
}

/*
* LR:左右对应的情况(左双旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* left_right_rotation(AVLTree k3)
{
k3->left = right_right_rotation(k3->left);

return left_left_rotation(k3);
}

/*
* RL:右左对应的情况(右双旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* right_left_rotation(AVLTree k1)
{
k1->right = left_left_rotation(k1->right);

return right_right_rotation(k1);
}

/*
* 创建AVL树结点。
*
* 参数说明:
* key 是键值。
* left 是左孩子。
* right 是右孩子。
*/
static Node* avltree_create_node(Type key, Node *left, Node* right)
{
Node* p;

if ((p = (Node *)malloc(sizeof(Node))) == NULL)
return NULL;
p->key = key;
p->height = 0;
p->left = left;
p->right = right;

return p;
}

/*
* 将结点插入到AVL树中,并返回根节点
*
* 参数说明:
* tree AVL树的根结点
* key 插入的结点的键值
* 返回值:
* 根节点
*/
Node* avltree_insert(AVLTree tree, Type key)
{
if (tree == NULL)
{
// 新建节点
tree = avltree_create_node(key, NULL, NULL);
if (tree==NULL)
{
printf("ERROR: create avltree node failed!\n");
return NULL;
}
}
else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
{
tree->left = avltree_insert(tree->left, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (HEIGHT(tree->left) - HEIGHT(tree->right) == 2)
{
if (key < tree->left->key)
tree = left_left_rotation(tree);
else
tree = left_right_rotation(tree);
}
}
else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
{
tree->right = avltree_insert(tree->right, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (HEIGHT(tree->right) - HEIGHT(tree->left) == 2)
{
if (key > tree->right->key)
tree = right_right_rotation(tree);
else
tree = right_left_rotation(tree);
}
}
else //key == tree->key)
{
printf("添加失败:不允许添加相同的节点!\n");
}

tree->height = MAX( HEIGHT(tree->left), HEIGHT(tree->right)) + 1;

return tree;
}

/*
* 删除结点(z),返回根节点
*
* 参数说明:
* ptree AVL树的根结点
* z 待删除的结点
* 返回值:
* 根节点
*/
static Node* delete_node(AVLTree tree, Node *z)
{
// 根为空 或者 没有要删除的节点,直接返回NULL。
if (tree==NULL || z==NULL)
return NULL;

if (z->key < tree->key) // 待删除的节点在"tree的左子树"中
{
tree->left = delete_node(tree->left, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (HEIGHT(tree->right) - HEIGHT(tree->left) == 2)
{
Node *r = tree->right;
if (HEIGHT(r->left) > HEIGHT(r->right))
tree = right_left_rotation(tree);
else
tree = right_right_rotation(tree);
}
}
else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
{
tree->right = delete_node(tree->right, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (HEIGHT(tree->left) - HEIGHT(tree->right) == 2)
{
Node *l = tree->left;
if (HEIGHT(l->right) > HEIGHT(l->left))
tree = left_right_rotation(tree);
else
tree = left_left_rotation(tree);
}
}
else // tree是对应要删除的节点。
{
// tree的左右孩子都非空
if ((tree->left) && (tree->right))
{
if (HEIGHT(tree->left) > HEIGHT(tree->right))
{
// 如果tree的左子树比右子树高;
// 则(01)找出tree的左子树中的最大节点
// (02)将该最大节点的值赋值给tree。
// (03)删除该最大节点。
// 这类似于用"tree的左子树中最大节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
Node *max = avltree_maximum(tree->left);
tree->key = max->key;
tree->left = delete_node(tree->left, max);
}
else
{
// 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
// 则(01)找出tree的右子树中的最小节点
// (02)将该最小节点的值赋值给tree。
// (03)删除该最小节点。
// 这类似于用"tree的右子树中最小节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
Node *min = avltree_maximum(tree->right);
tree->key = min->key;
tree->right = delete_node(tree->right, min);
}
}
else
{
Node *tmp = tree;
tree = tree->left ? tree->left : tree->right;
free(tmp);
}
}

return tree;
}

/*
* 删除结点(key是节点值),返回根节点
*
* 参数说明:
* tree AVL树的根结点
* key 待删除的结点的键值
* 返回值:
* 根节点
*/
Node* avltree_delete(AVLTree tree, Type key)
{
Node *z;

if ((z = avltree_search(tree, key)) != NULL)
tree = delete_node(tree, z);
return tree;
}

/*
* 销毁AVL树
*/
void destroy_avltree(AVLTree tree)
{
if (tree==NULL)
return ;

if (tree->left != NULL)
destroy_avltree(tree->left);
if (tree->right != NULL)
destroy_avltree(tree->right);

free(tree);
}

/*
* 打印"AVL树"
*
* tree -- AVL树的节点
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
void print_avltree(AVLTree tree, Type key, int direction)
{
if(tree != NULL)
{
if(direction==0) // tree是根节点
printf("%2d is root\n", tree->key, key);
else // tree是分支节点
printf("%2d is %2d's %6s child\n", tree->key, key, direction==1?"right" : "left");

print_avltree(tree->left, tree->key, -1);
print_avltree(tree->right,tree->key, 1);
}
}


References

https://blog.csdn.net/Woolseyyy/article/details/51505383